

XFER Triphase Transfer Pump

- Reduce casing, wellhead and flowline / pipeline pressures simultaneously.
- Transfer Triphase emulsions (gas, oil, water & solids) from the wellhead or header direct to the battery or between facilities with no separation.
- Avoid building new satellites and replace underutilized facilities using XFER's.
- 100% turndown capability with no recirculation required, lowering power consumption and less heat generation.
- Add parallel XFER's for increase production and relocate XFER's once production declines, achieving a near 100% facility efficiency.
- Place XFER's in series to increase pressure differentials and maximize discharge pressure, while decreasing power usage.
- Optimize any artificial lift systems and avoid liquid loading in free-flowing wells.
- +99% runtime and all service done on site in a matter of hours.

XFER Series	8"	10"	12"	16"	22"	
Max Δp (1)	1500	925	600	480	250	psi
Max Discharge (2)	1400	1400	740	740	740	psi
Max HP (3)	125	125	125	200	250	hp
Max Discharge Temp (4)	149					<u>o</u> F
Wax Discharge Temp (4)	(392ºC High Temp Options Available)					
	Max Liquid Equivalent Capacity (5)					
	6,151	10,617	15,857	29,021	55,803	bbls/d
	Max Gas Volumes @ 200psi Discharge Pressure and					
	99% GVF (5)					
Intake @ 100 psi	237	431	653	1201	2303	Mscfd
Intake @ 50 psi	114	205	353	657	1183	Mscfd
Intake @ 25 psi	62	94	202	381	692	Mscfd
Intake @ 10 psi	31	29	113	221	399	Mscfd

- (1) By setting units up in series, pressure differentials can be increased up to 1440 psi / 9928 kPa.
- (2) Some ANSI 300 / 740 psi models can be manufactured to ANSI 600 rating.
- (3) Available motors are 15hp to 250hp.
- (4) Higher discharge temperature models also available.
- (5) Volumes can be increased by setting units in parallel.
 For an accurate gas / fluid ratio simulation using your conditions, please contact IJACK
 Find the latest table updates at www.myijack.com

WHEN TO USE AN IJACK XFER TRIPHASE TRANSFER PUMP

Production Applications and Benefits:

- Lower casing, wellhead, and flowline pressures simultaneously.
- Lowering casing pressure may increase inflow from the formation and increase fluid levels.
- Lowering wellhead pressures may optimize downhole equipment run life; reduce workover frequencies; lower stuffing box pressures; reduce PCP torque; ESP length and power use, increase plunger lift cycles; and reduce injection pressures and volumes for gas lift and jet pumps.
- Lower casing, wellhead and flowline pressures simultaneously for a group of wells (well pad, riser, header, satellite facility, etc.).
- Lowering flowline pressures will allow all wells access to pipelines.
- Lowering flowline pressures will reduce liquid loading in free-flowing wells.
- Maintain pipelines under the hydrate curve.
- 100% of the gas will be captured, all condensates recovered and transferred to a facility, eliminating venting and flaring of emissions.
- Flowback / unload wells.
- Flowback / unload conventional and thermal wells in a fraction of the time and costs of traditional separator start up skids.

Facility Applications and Benefits:

- Replace underutilized inefficient facilities.
- Older underutilized separation and transfer facilities are a drain on OPEX. An XFER set up will replace the facility, lower operating costs, and offer 100% efficiency.
- Lower maintenance costs and intervals.
- Lower power usage.
- Avoid building new satellite facilities and optimize operations with less human interaction and supervision.
- Replace new facility construction with an XFER set up and significantly reduce CAPEX.
- XFER triphase mass transfer pumps can easily and quickly be added or relocated as volumes increase or decrease.
- No shutdowns or facility turnarounds required. +99% runtime = minimal downtime.
- Lower maintenance costs and intervals.
- XFER's operate 24/7 with minimal human interaction and supervision, significantly reducing OPEX.
- Consolidate Facilities.
- Avoid building emulsion separation facilities and process the production at a main battery.
- Easily and economically transfer gas and fluid emulsions between batteries / facilities.
- Lower pipeline pressures.
- Keep pipeline pressure accessible to all wells.
- Maintain pipelines under MAWP.
- Operate pipelines under hydrate formation curves.