

XFER Triphase Transfer Pump

- Reduce casing, wellhead and flowline / pipeline pressures simultaneously.
- Transfer Triphase emulsions (gas, oil, water & solids) from the wellhead or header direct to the battery or between facilities with no separation.
- Avoid building new satellites and replace underutilized facilities using XFER's.
- 100% turndown capability with no recirculation required, lowering power consumption and less heat generation.
- Add parallel XFER's for increase production and relocate XFER's once production declines, achieving a near 100% facility efficiency.
- Place XFER's in series to increase pressure differentials and maximize discharge pressure, while decreasing power usage.
- Optimize any artificial lift systems and avoid liquid loading in free-flowing wells.
- +99% runtime and all service done on site in a matter of hours.

XFER Series	8"	10"	12"	16"	22"	
Max Δp (1)	1500	925	600	480	250	psi
	10342	6378	4137	3309	1724	kPa
Max Discharge (2)	1400	1400	740	740	740	psi
	9653	9653	5102	5102	5102	kPa
Max HP (3)	125	125	125	200	250	hp
M. Di la Tana	65					00
Wax Discharge Temp (4)	(200ºC High Temp Options Available)					ΨĽ
	Max Liquid Equivalent Capacity (5)					
	978	1,688	2,521	4,614	8,872	m3/d
	Max Gas Volumes @ 200 psi Discharge Pressure and					
	99% GVF (5)					
Suction @ 100 psi / 690 kPa	6.7	12.2	18.5	34.0	65.2	e3m3/c
Suction @ 50 psi / 345 kPa	3.2	5.8	10.0	18.6	33.5	e3m3/c
Suction @ 25 psi / 172 kPa	1.8	2.7	5.7	10.8	19.6	e3m3/c
Suction @ 10 psi / 69 kPa	0.9	0.8	3.2	6.3	11.3	e3m3/c

- (1) By setting units up in series, pressure differentials can be increased up to 1440 psi / 9928 kPa.
- (2) Some ANSI 300 / 740 psi models can be manufactured to ANSI 600 rating.
- (3) Available motors are 15hp to 250hp.
- (4) Higher discharge temperature models also available.
- (5) Volumes can be increased by setting units in parallel. For an accurate gas / fluid ratio simulation using your conditions, please contact IJACK Find the latest table updates at www.myijack.com

WHEN TO USE AN IJACK XFER TRIPHASE TRANSFER PUMP

Production Applications and Benefits:

- Lower casing, wellhead, and flowline pressures simultaneously.
- Lowering casing pressure may increase inflow from the formation and increase fluid levels.
- Lowering wellhead pressures may optimize downhole equipment run life; reduce workover frequencies; lower stuffing box pressures; reduce PCP torque; ESP length and power use, increase plunger lift cycles; and reduce injection pressures and volumes for gas lift and jet pumps.
- Lower casing, wellhead and flowline pressures simultaneously for a group of wells (well pad, riser, header, satellite facility, etc.).
- Lowering flowline pressures will allow all wells access to pipelines.
- Lowering flowline pressures will reduce liquid loading in free-flowing wells.
- Maintain pipelines under the hydrate curve.
- 100% of the gas will be captured, all condensates recovered and transferred to a facility, eliminating venting and flaring of emissions.
- Flowback / unload wells.
- Flowback / unload conventional and thermal wells in a fraction of the time and costs of traditional separator start up skids.

Facility Applications and Benefits:

- Replace underutilized inefficient facilities.
- Older underutilized separation and transfer facilities are a drain on OPEX. An XFER set up will replace the facility, lower operating costs, and offer 100% efficiency.
- Lower maintenance costs and intervals.
- Lower power usage.
- Avoid building new satellite facilities and optimize operations with less human interaction and supervision.
- Replace new facility construction with an XFER set up and significantly reduce CAPEX.
- XFER triphase mass transfer pumps can easily and quickly be added or relocated as volumes increase or decrease.
- No shutdowns or facility turnarounds required. +99% runtime = minimal downtime.
- Lower maintenance costs and intervals.
- XFER's operate 24/7 with minimal human interaction and supervision, significantly reducing OPEX.
- Consolidate Facilities.
- Avoid building emulsion separation facilities and process the production at a main battery.
- Easily and economically transfer gas and fluid emulsions between batteries / facilities.
- Lower pipeline pressures.
- Keep pipeline pressure accessible to all wells.
- Maintain pipelines under MAWP.
- Operate pipelines under hydrate formation curves.

IJACK TECHNOLOGIES – www.myijack.com – sales@myijack.com - P: 403 808 4870